
EVPaths

Version 1.40

Giuseppe Ghibò

ghibo@galileo.polito.it

May 8, 1995

1 History

When the firsts TEX related programs were available for the Amiga, each one
of them had its own path searching scheme and rules. Mainly, environment
variables were used to store a particular path. Many TEX different programs
share the same environment variables, but often, these programs uses different
rules to indicate a path, essentially dued to the fact that the original path
routines were ported and adapted from Unix to Amiga by different persons.
This situation inevitably led to incompatibilities, so isn’t so rare the case that
two different TEX programs cannot be used in the same TEX installation. To
put an end to the unsatisfactory situation that led to “path anarchy”, I decided
to write some path routines from scratch. These routines, named “EVPaths
routines” (Environment Variables Path Routines) are contained in a linkable
library, and are very easy to use. The primary target I would obtain is “path
standardization”, while the second is to override the limit of the current path
scheme.

2 Disclaimer/Distribution

EVPaths is Copyright c© 1994, 1995 by Giuseppe Ghibò. All rights reserved.
EVPaths is declared to be FREEWARE.

This software is provided “as is” with no explicit or implicit warranty of any
kind. You are using it at your own risk.

The author disclaims any liability for damages, including any direct, indirect,
incidental, special, exemplary, or consequential damages arising in any way out
of the use of this software, even if advised of the possibility of such damage.

This software may be freely distributed and copied as long as the following
conditions are acknowledged:

• All parts of the program and the documentation must be left intact in any
ways.

• The distribution of single parts is not allowed. The repacking of this
distribution with other packers/archivers is, however, allowed.

3 Features

Here follow the main features of EVPaths:

• No limits to the length of the environment variables used to indicate a
path.

• Recursively path searching.

• Recursively environment variables searching.

1

• Commas, semicolons, spaces, tabs, LFs, FFs recognized as path separa-
tors.

• Support for path name containing spaces, commas and semicolons.

• Support of the Amiga path notation as well part of the Unix notation.

• Compatibility with any OS from 1.3 to 3.1.

• Linkable with programs which don’t make use of any C startup code.

4 Description

4.1 Arbitrary length of environment variables

The environment variable used to specify a path may have any length (according
to the memory size specified with the Alloc EnvPath() function). Of course if
we set the environment variable using the AmigaDOS command SetEnv, the
length of the variable is truncated to 255 chars. Using instead an Editor to set
the environment variable we may have variables of arbitrary length.

4.2 Recursively path searching

Appending one asterisk * or two-asterisks ** to a path element name, then
such name is recursively searched for subdirectories. The single asterisk causes
one-level directory searching, while the double asterisk causes the search to be
extended into all-levels subdirectories1. The recursive scan of subdirectories is
executed when the function Init EnvPath() is invoked. Generally this function
call is placed at the beginning of the program, so if we append two asterisks
** to a directory containing a huge number (note ‘huge’ not ‘a few’) of non-
reorganized subdirectories, this could slightly slow down the startup process of
the program. Of course isn’t a good idea to use path such as:

.,dh0:**,dh1:**,dh2:**

although this could give an indicative idea of how much time is needed to scan
all the subdirectories of the whole hard disk. Now, let’s see some examples.

For instance suppose to set the following path:

SetEnv TEXINPUTS TeX:texinputs**,TeX:macros*

then the directory list could became

1The ‘**’ notation allow a maximum of 10 level subdirectories (should be enough, but
anyway this value can be increased changing the macro MAX RECURS DIR in the file EVPaths.c).

2

TeX:texinputs

TeX:texinputs/one

TeX:texinputs/one/one

TeX:texinputs/one/one/two

TeX:texinputs/one/one/two/three

TeX:texinputs/one/one/two/three/four

.

.

.

TeX:texinputs/two

TeX:texinputs/two/one

TeX:texinputs/two/one/two

.

.

.

TeX:texinputs/macro

TeX:texinputs/macro/one

TeX:texinputs/macro/two

TeX:texinputs/macro/three

This mean that when the function EVP FileSearch() or EVP Open() or
EVP fopen() is invoked to search a file, then the file is searched into each of
the directories above.

One of the most advantage of using the asterisk notation is that we don’t
have to change the content of an environment variable each time we install a
new macro package. Since there are many macro packages for TEX, it’s a good
idea to keep each of them into his own directory. For instance the LaTEX2ε
package contains many sub-tools, and it is a good idea to keep each tool into
his own directory2 rather to put thousands of files into TeX:texinputs. For
instance with

SetEnv TEXINPUTS TeX:texinputs/LaTeX2e*

we match

TeX:texinputs/LaTeX2e

TeX:texinputs/LaTeX2e/tools

TeX:texinputs/LaTeX2e/graphics

TeX:texinputs/LaTeX2e/babel

and so on.
In table 1 are shown some synonymous for the asterisk notation.
Note that the chars * and ** and their synonymous don’t specify wild-

cards; e.g. specifying TeX:macro/ltx*my we don’t include every directory

2This is also estabilished by the TWG for the TEX Directory Structure.

3

Char Search to
* one-level subdirectories
** all-levels subdirectories
#? one-level subdirectories
#?> all-levels subdirectories
*> all-levels subdirectories

Table 1: Synonymous for * and **.

matching the string ltx*my. Note also that specifying TeX:texinputs* or
TeX:texinputs/* is the same, as well TeX:texinputs or TeX:texinputs/.

4.3 Recursively environment variable searching

In the path of an enviroment variable we can also specify the name of another
enviroment variable. For instance specifying the following path

.,TeX:texinputs,$MYPATH,TeX:macros

then the contents of the environment variable MYPATH will be appended to the
directory list. Note the variable MYPATH could contain another environment
variable and so on. Up to 5 levels of enviroment variables recursion are allowed3.
Let’s consider the following example:

SetEnv VARONE one,"$"VARTWO

SetEnv VARTWO two,"$"VARTHREE

SetEnv VARTHREE three,"$"VARFOUR

SetEnv VARFOUR four,"$"VARFIVE

SetEnv VARFIVE five,"$"VARSIX

SetEnv VARSIX six,"$"SEVEN

SetEnv SEVEN seven

then suppose we use the variable VARONE for searching. In such case we obtain
the following directory list:

one

two

three

four

five

Since recursive searching of environment variables is limited to 5-levels, the
variables VARSIX and VARSEVEN are ignored. Note that it is necessary to enclose

3This value can be increased changing the macro MAX RECURS VAR in the file EVPaths.c.

4

the $ between quotes, otherwise the Shell expand the enviroment variable (if
it exists). This means that quotes aren’t needed if we use an editor to set the
environment variable argument. Note that closed loops and duplicated entries
are discarded; for instance let’s consider

SetEnv TEXINPUTS .,TeX:texinputs,"$"MFINPUTS

SetEnv MFINPUTS .,MF:mfinputs,"$"TEXINPUTS

Using TEXINPUTS, then the directory list will contain

TeX:texinputs

MF:mfinputs

while using MFINPUTS for file searching, the directory list will became instead

MF:mfinputs

TeX:texinputs

What to do with a such feature? For instance we could specify a path
using two environment variables. For example suppose the variable TEXINPUTS
contains:

.,$MYPATH,TeX:texinputs,TeX:LaTeX,TeX:LaTeX2e*

We could set the enviroment variable MYPATH to mymacrodir and then run TEX.
Now suppose we would use the macro files of the directory mymacrodir2. In
such case we have just to change the variable MYPATH without to change the
whole contents of the variable TEXINPUTS. Of course if the variable MYPATH is
unset, then it is simply ignored.

4.4 Path separators

Each directory in the path may be separated from the other directories using

• Commas

• Semicolons

• Spaces

• Tabs

• Line feeds

• Form feeds

or any combination of them. For example we may edit the variable TEXINPUTS
as follow

5

TeX:texinputs, TeX:macros**

TeX:latex2e*; CWeb:macros

MF:inputs*

^L^L

OldTeX:mymacros

and so on.

4.5 Dir names containing path separator chars

If a directory name contains spaces, commas or semicolons we have to enclose
such name between quotes. For instance

"The LaTeX:", "this,, ,,,dirs"

"Another;;;,,;;;one"

Note that if a quote is left open (unmatched quote) then the path element is
taken as a directory name until a line feed or form feed is encountered.

4.6 Current directory

To include the current directory into a path we may use one of the following
symbols

. "" "."

4.7 Unix-like path notation

The Unix-like path notation is also supported. For instance the use of

./mydir

in the path, indicates that the directory mydir in the current directory must be
used in the directory list. Instead with

../mydir

the directory mydir of the parent directory is used. Note that the Unix absolute
path notation (e.g. /tex/texinputs/) isn’t supported because it conflicts with
the Amiga parent dir notation.

4.8 Default path

If the path specified in the environment variable superseeds the default path,
we may use the character ? to place the default path at an arbitrary position
in the directory list. For instance suppose to have the following default path

default_path = "MF:inputs,MF:ams/fonts/symbols"

6

and the environment variable

SetEnv MFINPUTS .,MF:mfinputs,?,CTAN:mfinputs

then the result directory list will be:

‘’ (null string is current dir)

‘MF:mfinputs’ (from MFINPUTS)

‘MF:inputs’ (from default path)

‘MF:ams/fonts/symbols’ (from default path)

‘CTAN:mfinputs’ (from MFINPUTS)

4.9 Ignoring duplicated entries

EVPaths ignores duplicated entries. For instance let’s consider the following
path

.,".","",TeX:inputs,MF:inputs,TeX:inputs,MF:inputs"

In such case the directory list contains only the following entries

‘’ (null string is current dir)

‘TeX:inputs’

‘MF:inputs’

5 Programming

Here follow a brief description on how to use EVPaths in our C programs.
Firstly simply add the line

#include <evpaths.h>

in your program.
Then we have to define pointers to the structure EnvVarPath. We need one

pointer for each environment variable. For instance with

struct EnvVarPath *var_one, *var_two;

we plan to use two environment variables. Then we have to allocate the memory
for each EnvVarPath structure. For this purpose we have to use the function
Alloc EnvVarPath(). Its synopsis is

STRPTR varname;

LONG size;

var_one = Alloc_EnvVarPath(varname, size);

7

where varname is the pointer to the name of the environment variable and size

is the size of the memory needed to store the directory list. Note that each
directory name stored in the directory list will consume (strlen(dirname) + 5)
bytes. For example with

var_one = Alloc_EnvVarPath("TEXINPUTS", 4096L);

var_two = Alloc_EnvVarPath("MFINPUTS", 2048L);

we alloc 4096 bytes for the path specified in the environment variable TEXINPUTS
and 2048 bytes for the path specified by MFINPUTS. Note that this size doesn’t
directly depend by the length of the environment variable. For instance an
environment variable containing the string Work:** is only 7 bytes long but
probably the volume Work: contains many other directories and subdirectories,
so a large value for size should be provided. After to have obtained a valid
pointer from the function Alloc EnvVarPath() the structure must be initialized
by the function Init EnvVarPath(). This is the function which expand and
stores the path specified in the environment variable. Its template is

Init_EnvVarPath(struct EnvVarPath *,

APTR defpath,

LONG mode);

For instance

STRPTR def_path_str = ".,TeX:inputs*";

STRPTR def_path_arr[] = { ".","TeX:inputs*", NULL };

Init_EnvVarPath(var_one, def_path_str, ENVPATH_DEFSTR);

Init_EnvVarPath(var_two, def_path_arr, ENVPATH_DEFARR);

The constant ENVPATH DEFARRmust be used to indicate that the default path
is a pointer to an array of strings, while the constant ENVPATH DEFSTR must be
used, instead, if the passed default path is a STRPTR pointer. If we don’t have a
default path we have to specify NULL as argument, e.g.

Init_EnvVarPath(var_one, NULL, NULL);

When the function Init EnvVarPath() is called, the buffer allocated for the
EnvVarPath structure is filled with entries either from the environment variable
and/or from the default path. Path elements containing * or ** or ? or names
of other environment variables are expanded (i.e. the scan of the directory tree
is performed).

Note that the default path is overridden by the contents of the environment
variable. It is used just in case the specified environment variable doesn’t ex-
ists. It is also possible to prepend or append the default path to the one read
from the environment variable. To do this simply OR the third argument of
the Init EnvVarPath() function with the constants ENVPATH PREPEND PATH or
ENVPATH APPEND PATH. For example

8

Init_EnvVarPath(var_one,

def_path_str,

ENVPATH_DEFSTR | ENVPATH_PREPEND_PATH);

In this case the default path is used for searching, before any other path element
given in the environment variable. Instead with

Init_EnvVarPath(var_one,

def_path_str,

ENVPATH_DEFSTR | ENVPATH_APPEND_PATH);

the default path is searched after the path given in the environment variable.
The example below can make this clear. Suppose the directory TeX:inputs

contains only two subdirectories (e.g. one and two). Now suppose to set the
variable TEXINPUTS with the command

SetEnv TEXINPUTS .,TeX:texinputs,TeX:macros

Suppose also to have the following default path

default_path = ".,TeX:inputs*";

With

Init_EnvVar(var_one,

default_path,

ENVPATH_DEFSTR|ENVPATH_APPEND_PATH);

the directory list became

‘’ (null dir is current dir)

‘TeX:texinputs’ (from the env var TEXINPUTS)

‘TeX:macros’ (from the env var TEXINPUTS)

‘TeX:inputs’ (from the default path)

‘TeX:inputs/one’ (from the default path)

‘TeX:inputs/two’ (from the default path)

Note how the current dir entry (.), present either in the default path and in the
environment variable, is considered only once.

There is another option we can specify (together with the others explained
above) in the third argument of the function Init EnvVarPath(). ORing with
ENVPATH CURRENTDIR FIRST then the current directory is used to search files
before any other path specified in the default path and/or in the environment
variable.

Note that the call to the Init EnvVarPath() may be placed anywhere in the
program, but is a good practice to place it at the beginning of the program.
The important is that the EnvVarPath structure is initialized before calling any
of the functions listed below.

9

Once the pointer to the EnvVarPath structure has been initialized by the
function Init EnvVarPath() we may inquire the field evp->status to know the
status of the buffer. The possibles values are listed in the file EVPaths.h (i.e.
EVPATHS BUFFER EMPTY, ENVPATH BUFFER FULL, . . .).

5.1 Searching a file

5.1.1 EVP FileSearch()

After the EnvVarPath structure pointer has been initialized as explained above,
we can search a file using the function EVP FileSearch(). Its template is:

STRPTR EVP_Filesearch(STRPTR filename,

struct EnvVarPath *evp,

UBYTE *buffer,

LONG size);

where filename is a pointer to the name of the file to search, buffer of size
size is a buffer used to store the name of the file found. If the file is found
then the returned value is a pointer to buffer and buffer will contain the full
name of the file, otherwise a NULL pointer is returned. The example below
may clarify the correct use of the function EVP FileSearch()

#include <evpaths.h>

#define SIZE 256L

#define EVPSIZE 4096L

struct EnvVarPath *mf_var;

char *default_path = ".,MF:mfinputs*";

void main()

{

STRPTR s;

UBYTE bufname[SIZE];

evp = Alloc_EnvVarPath("MFINPUTS", EVPSIZE);

Init_EnvVarPath(mf_var,

default_path,

ENVPATH_DEFSTR);

if (s = EVP_FileSearch("cmr10.mf",

mf_var, bufname, SIZE))

{

printf("File found: %s\n", s);

10

}

else

{

printf("File not found!\n");

}

Free_EnvVarPath(mf_var);

}

In this example the file cmr10.mf is searched using the path provided in the
environment variable MFINPUTS.

5.1.2 EVP Open()

The function EVP Open() combines the features of the function EVP File-
Search() and of the AmigaDOS function Open() in one function. Its template
is:

BPTR EVP_Open(STRPTR filename,

struct EnvVarPath *evp,

UBYTE *buffer,

LONG size,

LONG mode);

The arguments filename, evp, buffer and size are the same as in the function
EVP FileSearch(); mode is the opening mode as in the AmigaDOS function
Open() (i.e. MODE OLDFILE or MODE NEWFILE). This function returns the BPTR of
the opened file exactly in the same way the function Open() does, i.e. if the file
is found in the provided path it returns a valid BPTR, otherwise NULL is returned.
The full name of the found file is stored in the provided buffer buffer. If we
don’t need to know the full name of the file found we have just to use NULL as
argument for buffer and size, e.g.

fh = EVP_Open("cmr10.mf", mf_var, NULL, NULL, MODE_OLDFILE);

For instance using this function in the example above we obtain

.

.

.

BPTR fh;

if (fh = EVP_Open("cmr10.mf",

mf_var, bufname, MODE_OLDFILE))

printf("File found and opened!\n");

11

else

printf("File not found!\n");

Free_EnvVarPath(mf_var);

}

While the behaviour of EVP Open() with MODE OLDFILE is rather clear, what
we can do with MODE NEWFILE isn’t so immediate. Suppose to set the environ-
ment variable TEXCONFIG as follows

SetEnv TEXCONFIG TeX:config,.

Now suppose we to save a config file. We may use in such case

fh = EVP_Open("mf.cmf",

mfcfg_var, buffer, size, MODE_NEWFILE);

If the file TeX:config/mf.cmf already exists but it’s protected against writing
or deleting, or the directory TeX:config doesn’t exists, then the next path
element (e.g. current directory in the example) will be used to save the file
mf.cmf.

5.1.3 EVP fopen()

The function EVP fopen() is similar to the function EVP Open() except it re-
turns a FILE * instead of BPTR. The argument mode of this function is the same
as in the C function fopen(). Template:

FILE *EVP_Open(STRPTR filename,

struct EnvVarPath *evp,

UBYTE *buffer,

LONG size,

char *mode);

Note to use this function you need to use the library EVPaths no.lib instead
of the library EVPaths.lib.

5.2 Freeing allocated vars

Before the program exits all the allocated memory must be freed. For this pur-
pose the function Free EnvVarPath(env var) must be called before the pro-
gram exits. This is a care stuff, otherwise the program will not release all the
allocated memory. Note that if a CTRL-C interrupts the program before it
reaches the point of Free EnvVarPath(), an interrupt handler should be pro-
vided (this could be done usign the function signal()). Alternatively we can use
the library EVPaths no.lib, which not requires any interrupt handler because it
uses the function malloc() instead of AllocMem() to alloc the memory: However
remember that EVPaths no.lib cannot be used if the program doesn’t make use
of any C standard startup code.

12

5.3 Examples

The files TeXWhereis.c, TeXWhereIs2.c and TeXSaveString.c contain some
examples on how to use EVPaths.

6 Programs supporting EVPaths

Currently the following Amiga programs support EVPaths

• METAFONT 2.71.

• PasTEX 1.4 beta 7.

• makeindex 2.13.

• dvips 5.58 revision 1.

• Web2c 6.1.

7 Acknowledgements

The author wishes to thanks Andreas Scherer and Georg Heßmann for their sig-
nificative suggestions and collaboration and for having intensely tested EVPaths.

8 Misc

For any questions, suggestions, comments, bug report or enhancement requests,
please feel free to e-mail me to ghibo@galileo.polito.it.

13

